Small and Strong Formulations for Unions of Convex Sets from the Cayley Embedding
نویسنده
چکیده
There is often a significant trade-off between formulation strength and size in mixed integer programming (MIP). When modelling convex disjunctive constraints (e.g. unions of convex sets) this trade-off can be resolved by adding auxiliary continuous variables. However, adding these variables can result in a deterioration of the computational effectiveness of the formulation. For this reason, there has been considerable interest in constructing strong formulations that do not use continuous auxiliary variables. We introduce a technique to construct formulations without these detrimental continuous auxiliary variables. To develop this technique we introduce a natural nonpolyhedral generalization of the Cayley embedding of a family of polytopes and show it inherits many geometric properties of the original embedding. We then show how the associated formulation technique can be used to construct small and strong formulation for a wide range of disjunctive constraints. In particular, we show it can recover and generalize all known strong formulations without continuous auxiliary variables.
منابع مشابه
Regularity in mixed-integer convex representability
Characterizations of the sets with mixed integer programming (MIP) formulations using only rational linear inequalities (rational MILP representable) and those with formulations that use arbitrary closed convex constraints (MICP representable) were given by Jeroslow and Lowe (1984), and Lubin, Zadik and Vielma (2017). The latter also showed that even MICP representable subsets of the natural nu...
متن کاملStrong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces
In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.
متن کاملPhishing website detection using weighted feature line embedding
The aim of phishing is tracing the users' s private information without their permission by designing a new website which mimics the trusted website. The specialists of information technology do not agree on a unique definition for the discriminative features that characterizes the phishing websites. Therefore, the number of reliable training samples in phishing detection problems is limited. M...
متن کاملSmall independent branching formulations for unions of V-polyhedra
We present a framework for constructing small, strong mixed-integer formulations for disjunctive constraints. Our approach is a generalization of the logarithmically-sized formulations of Vielma and Nemhauser for SOS2 constraints [49], and we offer a complete characterization of its expressive power. We apply the framework to a variety of disjunctive constraints, producing novel, small, and str...
متن کاملFunctionally closed sets and functionally convex sets in real Banach spaces
Let $X$ be a real normed space, then $C(subseteq X)$ is functionally convex (briefly, $F$-convex), if $T(C)subseteq Bbb R $ is convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$ is functionally closed (briefly, $F$-closed), if $T(K)subseteq Bbb R $ is closed for all bounded linear transformations $Tin B(X,R)$. We improve the Krein-Milman theorem ...
متن کامل